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ABSTRACT
A number of improvements have been added to the existing analytical model of hysteresis loops defined in parametric form. In particular,
three phase shifts are included in the model, which permits us to tilt the hysteresis loop smoothly by the required angle at the split point as well
as to smoothly change the curvature of the loop. As a result, the error of approximation of a hysteresis loop by the improved model does not
exceed 1%, which is several times less than the error of the existing model. The improved model is capable of approximating most of the known
types of rate-independent symmetrical hysteresis loops encountered in the practice of physical measurements. The model allows building
smooth, piecewise-linear, hybrid, minor, mirror-reflected, inverse, reverse, double, and triple loops. One of the possible applications of the
model developed is linearization of a probe microscope piezoscanner. The improved model can be found useful for the tasks of simulation of
scientific instruments that contain hysteresis elements.
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I. INTRODUCTION

The phenomenon of hysteresis is widespread in nature; it is
often met in many fields of science and engineering including instru-
ments used in scientific research.1–3 There are a number of quite
complicated analytical models describing this phenomenon.4 One
of the simple ones is the analytical model suggested in Ref. 1. With
that model, a family of hysteresis loops is described by the following
parametric equations:

x(α) = a cosm α + bx sinn α,
y(α) = by sinα,

(1)

where α is a real parameter (α = 0, . . ., 2π); a is the x coordinate of the
split point (see Fig. 1); bx and by are the saturation point coordinates;
m is a positive odd integer (m = 1, 3, 5, . . .) defining the curvature
of the hysteresis loop; and n is a positive integer defining the type of
hysteresis loop and its curvature. With n = 1, the Leaf loop type is
formed, with n = 2, 4, 6, . . ., the Crescent (Boomerang), and with n
= 3, 5, 7, . . ., the Classical. With increasing parameter α, the move-
ment along the loop occurs in the counterclockwise direction, and

with decreasing—clockwise. The start point (α = 0) and the end
point (α = 2π) of a loop are both at the split point a.

The main distinctive feature of model (1) is its simplicity. The
model is intuitive, and it allows quickly creating hysteresis loops of
a required type and easily determining their key parameters a, bx,
by, m, and n. The 1.5%–6%1 approximation accuracy of model (1)
is quite enough for most practical tasks. However, there are cases
when a higher accuracy is required. The improved model5 suggested
in the article approximates hysteresis loops with an error of 1%
or less.

Model (1) covers most of the known types of rate-independent
symmetrical smooth hysteresis loops. The improved model allows
controlling the tilt and curvature of smooth loops more accurately
(see Sec. II A 2). Besides the smooth loops, the improved model
allows building various piecewise-linear loops (see Sec. II B) as well
as hybrid loops (see Sec. II B 1 b) in which rectilinear sections are
combined with curvilinear ones. Moreover, the use of the improved
model can help create continuously drawn double (see Sec. II C)
and triple (see Sec. II D) loops (both self-crossing and non-self-
crossing) out of smooth, piecewise-linear, and hybrid loops as well
as of their combinations. Section II E provides formulas for area
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FIG. 1. Hysteresis loops of Leaf (n = 1), Crescent (Boomerang, n = 2), and
Classical (n = 3) types. The area of all the three loops is the same.

calculation of the hysteresis loops. Overall, this article presents a
general approach applicable for approximation of a large number
of varieties of hysteresis loops.

To simplify the construction, analysis, and identification of hys-
teresis loops under consideration, the supplementary material is
provided in the form of Mathcad® worksheets (MathSoft, USA).
In order not to overcomplicate the article, the derivation of some
formulas is omitted. The detailed derivation can be found in the
supplementary material.

II. DESCRIPTION OF THE IMPROVED MODEL
A. Smooth hysteresis loops
1. Additional representations of hysteresis loop

a. Representation in the form of the sum of an unsplit loop and
a splitting curve. Hysteresis loop (1) can always be represented as a
sum of two parametric curves,

x(α) = x1(α) + x2(α),
y(α) = y1(α) + y2(α),

(2)

where x1(α) = bx sinn α, y1(α) = by sin α is the unsplit loop; x2(α)
= a cosm α, y2(α) = 0 is the splitting curve. This representation
is useful while considering transformations that change tilt and/or
curvature of hysteresis loop (1): first, the unsplit loop is subjected
to tilting/curving, after that the obtained result is split by simply
adding the splitting curve. Moreover, by altering/adding a direction
of action of the splitting curve, it is possible to create double (see
Sec. II C 3) and triple (see Sec. II D 3) hysteresis loops.

b. Representation in the form of a frequency spectrum. Using
de Moivre’s formula, the generating function x(α) in model (1) can
also be represented as a sum of cosines and sines having multiple
frequencies (frequency spectrum),

x(α) =
a

2m−1

m−1
2

∑
k=0

Ck
m cos((m − 2k)α)

+
bx

2n−1

n−1
2

∑
k=0
(−1)

n−1
2 +kCk

n sin((n − 2k)α),

(3)
y(α) = by sinα,

where Ck
l is a binomial coefficient (k and l are positive integers);

Ck
l = l!/[k!(l − k)!] if 0 ≤ k ≤ l, otherwise Ck

l = 0 [see (6) and (25),
Ck
l = 0 if k is a real number]. Equations (3) are valid for odd n; equa-

tions for even n are given in the supplementary material. For exam-
ple, equations describing the hysteresis loop Classical (see Fig. 1) in
accordance with (3) with m = n = 3 are as follows:

x(α) =
a
4
[3 cosα + cos(3α)] +

bx
4
[3 sinα − sin(3α)],

y(α) = by sinα.
(4)

It is easy to see that notation of the generating function x(α) in
the form (3) is, in fact, a decomposition of x(α) into odd harmonics
of the Fourier series,

x(α) =
1
2
A0 +

l

∑
k=1
(Ak cos(kα) + Bk sin(kα)),

y(α) = by sinα,

(5)

where the Fourier coefficients Ak and Bk are determined by the
algebraic formulas,

Ak =
a

2m−1 C
m−k

2
m ,

Bk = (−1)⌊
k−1

2 ⌋ bx
2n−1 C

n−k
2

n .
(6)

The amplitude A0 of the zero-frequency component (k = 0) and the
amplitudes Ak and Bk of all even harmonics (k = 2, 4, 6, . . .) in (5) are
equal to zero. The value of l is set to the largest of the m and n power.
The floor function in the expression for Bk in (6) is optional and used
only to avoid the generation of complex numbers when k is even.
For example, the Fourier coefficients of the generating function x(α)
of the Classical loop (m = n = 3) shown in Fig. 1 are as follows: Ak
= (0, 3a/4, 0, a/4) and Bk = (0, 3bx/4, 0, −bx/4).

Having the Fourier coefficients Ak and Bk (6), the generating
function x(α) can also be represented as

x(α) =
l

∑
k=1

Amk cos(kα − ϕk), (7)
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where amplitudes Amk and phases φk of the harmonics are deter-
mined by the following formulas:

Amk =
√

A2
k + B2

k =

¿
Á
ÁÀ
(

a
2m−1 C

m−k
2

m )
2

+ (
bx

2n−1 C
n−k

2
n )

2

,

tanφk =
Bk

Ak
= (−1)⌊

k−1
2 ⌋2m−n

C
n−k

2
n bx

C
m−k

2
m a

.

(8)

For example, the hysteresis loop Classical (m = n = 3) shown in Fig. 1
has the amplitudes Amk = (0, 3

√
a2 + b2

x/4, 0,
√
a2 + b2

x/4) and the
phases φk = (0, bx/a, 0, −bx/a).

The generating function x(α) can also be represented in the
exponential form,

x(α) =
l

∑
k=−l

Cke
ikα, (9)

where i is the imaginary unit, and the complex Fourier coefficient Ck
is determined as follows:

Ck =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
(Ak − iBk), k = 1, 3, 5, . . . ,

1
2
(Ak + iBk), k = −1,−3,−5, . . . ,

0, k = 0,±2,±4,±6, . . . .

(10)

Having the complex Fourier coefficient Ck, the generating
function x(α) can also be represented as

x(α) =
l

∑
k=−l

Amke
i(kα−φk) =

l

∑
k=−l

Amk cos(kα − φk), (11)

where amplitudes Amk and phases φk of the harmonics are deter-
mined by the following formulas:

Amk =
√

Re2(Ck) + Im2(Ck),

ϕk = −Arg(Ck) = −arctan
Im(Ck)

Re(Ck)
,

(12)

where Re, Im, and Arg are the real part, the imaginary part, and the
argument of a complex number, respectively.

Representation of the generating function x(α) in the form
of a frequency spectrum (3), (5), (7), and (11) allows us to syn-
thesize hysteresis loops of a custom shape, tilt, and curvature by
changing the amplitude and phase of harmonic components and
by adding/excluding harmonic components with certain values of
amplitude and phase. This approach permits us to build smooth
hysteresis loops with almost any shape.

Figure 2 shows an example of a Classical hysteresis loop syn-
thesis with a complex shape6 using harmonic components. The gen-
erating function x(α) of the loop is formed by summing the first four
odd harmonics (m = 7). The hysteresis loop is drawn exactly through
14 predefined points, and six of them are the key points of the loop
±a, ±ay, ±b (where ay is a vertical splitting, see Secs. II C 3 and
II D 3). The amplitudes and phases of the harmonic compo-
nents are determined numerically by solving a system of nonlinear

FIG. 2. Classical hysteresis loop of a complex shape, whose generating function
x(α) is formed by summing the first four odd harmonics. The loop is drawn exactly
through 14 predefined points. The loop area depends on the amplitude and phase
of the first harmonic only.

equations (see supplementary material). The loop area depends on
the amplitude and phase of the first harmonic only; the rest of the
harmonics do not affect the loop area (see Sec. II E 1).

2. Using phase shifts
Among the main modifications to the previously proposed

model of the hysteresis loop is the introduction of phase shifts Δα1,
Δα2, and Δα3,

x(α) = â cosm(α + Δα1) + b̂x sinn
(α + Δα2),

y(α) = by sin(α + Δα3),
(13)

where â and b̂x are corrected parameters of a and bx, respectively.
First, let us consider the influence of each of the three phase shifts
Δα1, Δα2, and Δα3 separately.

a. Loop tilting by phase shift Δα1. Phase shift Δα1 allows us to
tilt the hysteresis loop gradually by changing slope angle β = π/2–θ
of a tangent to the loop at the split point a (see Fig. 3). In the model
suggested earlier, loop tilting was available by rotation of the coor-
dinate system by angle θ and predistortion of the loop parameters
a, bx, and by by their rotation in the opposite direction.1 Below are
more correct formulas for loop tilting by rotation, which exclude a
slight displacement of the split point from the given position that
existed previously (Δα1 = Δα2 = Δα3 = 0),

x̄(α) = x(α) + sin θ(bx sin θ + by cos θ)(sinα − sinn α),

ȳ(α) = y(α) + sin θ(bx cos θ − by sin θ)(sinα − sinn α).
(14)
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FIG. 3. Tilting hysteresis loop of the Classical type with phase shift Δα1. Tilting by
angle ±θ at split point a is provided with a shift by ∓Δα1. Loop tilting results in an
increase in the loop area. The area of the loop with a positive slope is equal to the
area of the loop with a negative slope.

It can be seen from transformations (14) that the tilted loop repre-
sents by itself a result of addition of the initial loop with some curve,
which provides the tilt of the initial loop (see Sec. II A 4).

Since the introduction of phase shift Δα1 leads to a change of
the coordinates of the points of splitting a and saturation bx, a cor-
rection of coordinates of these points is required. In the improved
model (13), the corrected parameters â and b̂x are found from the
following simple system of equations composed for the split point
α = 0 and the saturation point α = π/2 (Δα2 = Δα3 = 0):

â cosm(0 + Δα1) + b̂x sinn 0 = a,

â cosm(
π
2

+ Δα1) + b̂x sinn π
2
= bx,

(15)

whence

â =
a

cosm Δα1
,

b̂x = bx + a tanm Δα1

(16)

can be easily determined. Leaf type loops (n = 1) with m = 1 do not
depend on phase shift Δα1. Phase shift Δα1 required for loop tilt-
ing by the preset angle θ at split point a (α = 0) is calculated by the
following formula:

Δα1 = −arctan
by tan θ
ma

. (17)

Unsplit loops (a = 0) cannot be tilted with phase shift Δα1.

b. Changing loop curvature by phase shift Δα2. Phase shift Δα2
allows for changing the curvature of a hysteresis loop (see Fig. 4).
Unlike parameter m, phase shift Δα2 provides a continuous change
of the curvature of the loop. Like phase shift Δα1, in the case of phase
shift Δα2, corrected coordinates â and b̂x of the split and the satura-
tion points, respectively, should be determined. To do that, a system
of equations composed for the split point α = 0 and the saturation
point α = π/2 should be solved (Δα1 = Δα3 = 0),

â cosm 0 + b̂x sinn
(0 + Δα2) = a,

â cosm
π
2

+ b̂x sinn
(
π
2

+ Δα2) = bx,
(18)

whence

â = a − bx tann Δα2,

b̂x =
bx

cosn Δα2
.

(19)

Leaf type loops (n = 1) with m = 1 do not depend on phase
shift Δα2.

c. Changing loop curvature by phase shift Δα3. Like phase shift
Δα2, phase shift Δα3 allows for continuous change of the curvature
of a hysteresis loop (see Fig. 5). Composing equations for the split
point α = 0 and the saturation point α = π/2, like it has been done
above, one can obtain (Δα1 = Δα2 = 0),

â cosm(0 − Δα3) + b̂x sinn
(0 − Δα3) = a,

â cosm(
π
2
− Δα3) + b̂x sinn

(
π
2
− Δα3) = bx,

(20)

FIG. 4. Continuous change in the curvature of the hysteresis loop by phase shift
Δα2. The loop area increases with an increase in phase shift Δα2.

Rev. Sci. Instrum. 91, 065106 (2020); doi: 10.1063/5.0012931 91, 065106-4

Published under license by AIP Publishing

https://scitation.org/journal/rsi


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

FIG. 5. Continuous change in the curvature of the hysteresis loop by phase shift
Δα3. The loop area decreases with an increase in phase shift Δα3.

whence the corrected parameters can be found as follows:

â =
a cosn Δα3 + bx sinnΔα3

sinm+nΔα3 + cosm+nΔα3
,

b̂x =
bx cosmΔα3 − a sinmΔα3

sinm+nΔα3 + cosm+nΔα3
.

(21)

The shape of Leaf type loops (n = 1) with m = 1 does not depend on
phase shift Δα3.

The effect of the phase shift Δα3 = Δα is opposite to the one of
Δα2 = Δα (compare Fig. 5 with Fig. 4). Moreover, the loop built with
Δα2 = Δα is somewhat different from the loop built with Δα3 = −Δα.
The difference grows as |Δα| increases. Phase shift Δα3 causes an
offset of parameter α by value Δα3. As a result, parameter α becomes
equal to −Δα3 at split point a and to π/2 − Δα3 at saturation point b.

d. Using several phase shifts simultaneously. In the general case
when all the three phase shiftsΔα1,Δα2, andΔα3 are used, the system
of equations composed for the split point α = 0 and for the saturation
point α = π/2 will look as follows:

â cosm(0 + Δα1 − Δα3) + b̂x sinn
(0 + Δα2 − Δα3) = a,

â cosm(
π
2

+ Δα1 − Δα3) + b̂x sinn
(
π
2

+ Δα2 − Δα3) = bx.
(22)

Solving the system (22), the corrected parameters searched for are
found,

â =
acosn(Δα2 − Δα3) − bxsinn

(Δα2 − Δα3)

sinm(Δα1 − Δα3)sinn(Δα2 − Δα3) + cosm(Δα1 − Δα3)cosn(Δα2 − Δα3)
,

b̂x =
asinm

(Δα1 − Δα3) + bxcosm(Δα1 − Δα3)

sinm(Δα1 − Δα3)sinn(Δα2 − Δα3) + cosm(Δα1 − Δα3)cosn(Δα2 − Δα3)
.

(23)

By substituting the obtained parameters â and b̂x into (13), it is easy
to show that with m = 1, loops of the Leaf type (n = 1) do not
depend on phase shifts Δα1 and Δα2, and the shape of these loops
does not depend on phase shift Δα3. Formulas (16), (19), and (21)
are particular cases of formulas (23).

Although the effect of phase shift Δα3 is opposite to the effect of
phase shift Δα2, they do not completely neutralize each other when
used jointly Δα2 = Δα3 = Δα (Δα1 = 0). When the two phase shifts are
set equal to each other Δα2 = Δα3 = Δα, their joint action is opposite
to the action of the phase shift Δα1 = Δα. Therefore, in order to tilt a
hysteresis loop in the split point, the phase shifts Δα2 = Δα3 = −Δα
can be used instead of the phase shift Δα1 = Δα. Since the phase
shifts Δα2 and Δα3 = −Δα2 produce a similar effect, the practical
application of model (13) may involve only two of them: Δα1 and
Δα2 (see Sec. III) or Δα1 and Δα3. When using phase shifts Δα1 and
Δα2, formulas for the corrected parameters â and b̂x are obtained
from formulas (23) by substituting Δα3 = 0; when using phase shifts
Δα1 and Δα3—by substituting Δα2 = 0.

It is noteworthy that with Δα1 = Δα2 = Δα3 = Δα ≠ 0, where
Δα is an arbitrary real number, the corrected parameters â and b̂x
of the improved model (13) degenerate into parameters a and bx of

the original model (1), respectively. Thus, in the case under consid-
eration, the hysteresis loops built by model (13) coincide in shape
with the loops built by model (1), but parameter α of the former is
shifted by Δα as compared to the latter. The conclusion about the
degeneration of model (13) into model (1) also comes out of the
following consideration. Since the effect of the joint usage of
the equal phase shifts Δα2 = Δα3 = Δα is opposite to the effect of
the phase shift Δα1 = Δα, the joint usage of three identical phase
shifts Δα1 = Δα2 = Δα3 = Δα should lead to the formation of
loop (1).

Like the original model (1), the improved model (13) can also
be represented as a sum of harmonic oscillations,

x(α) =
â

2m−1

m−1
2

∑
k=0

Ck
m cos((m − 2k)(α + Δα1))

+
b̂x

2n−1

n−1
2

∑
k=0
(−1)

n−1
2 +kCk

n sin((n − 2k)(α + Δα2)),

y(α) = by sin(α + Δα3).

(24)
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The Fourier coefficientsAk andBk can also be directly extracted from
the representation (24),

Ak =
â

2m−1 C
m−k

2
m cos(kΔα1) + (−1)⌊

k−1
2 ⌋ b̂x

2n−1 C
n−k

2
n sin(kΔα2),

Bk =
−â

2m−1 C
m−k

2
m sin(kΔα1) + (−1)⌊

k−1
2 ⌋ b̂x

2n−1 C
n−k

2
n cos(kΔα2).

(25)

Having these coefficients, it is easy to determine the amplitudes Amk
and the phases φk of harmonics of the generating function x(α) [see
Eqs. (8) and (12)].

According to definition (13), in order to produce a harmonic
signal at the output y(α) of a hysteresis element, a signal of the form
x(α) = â cosm(α + Δα1) + b̂x sinn(α + Δα2) [that is a sum of har-
monics (7) in accordance with spectral representation (24)] should
be applied to its input. The proper initial phase shift Δα3 of the
harmonic signal is obtained by setting the corresponding corrected
parameters â and b̂x calculated by formulas (23). That being said,
consequently, the hysteresis loop (13) has a filtering capability.

3. Hysteresis loops of Bat and Astro types
In Ref. 1, the hysteresis loop of Bat (Butterfly) type was obtained

by taking the absolute value of generating function y(α), i.e., ỹ(α) =
∣by sinα∣. A similar type of loop can also be obtained by raising sin α
in y(α) to an even power k = 2, 4, . . ., i.e.,

x̃(α) = x(α),

ỹ(α) = by sink α.
(26)

The Bat type hysteresis loop with k = 2 is shown in Fig. 6(a). Odd
powers k = 3, 5, . . . will yield loops of Astro7,8 type. The hysteresis
loop of Astro type with k = 3 is shown in Fig. 6(b).

4. Arithmetic operations on hysteresis loops
The hysteresis loops (1)–(5), (7), (9), (11), and (13) and their

components can be added, subtracted, multiplied by a number,
raised to a power, and used as arguments in some functions,

x̄(α) =∑
i
Aixkii (α),

ȳ(α) =∑
i
Biylii (α),

(27)

where Ai and Bi are real factors; ki and li are positive integers and
usually odd powers. The arithmetic operations (27) defined on the
loops allow changing the shape, tilt, and curvature of hysteresis loops
as well as making double loops (see Sec. II C 4). Addition of loops of
different types is admissible.

An example of the addition of two hysteresis loops of different
types—the Leaf loop and the Classical loop (a2 = a − a1, b2x = bx
− b1x, b2y = by − b1y)—is shown in Fig. 7. The parameters a, bx, by,
m, and θ of the resulting loop are given in the top left corner of the
figure. It should be noted that by adding with a Leaf type loop, Clas-
sical loops can be tilted at split point a by angle θ (β = π/2–θ is a slope
angle of tangent at point a). By taking into account the preset angle
θ, the loop parameter b1x (or b1y, b2y, by) can be found according to
the following formula:

FIG. 6. Hysteresis loop: (a) Bat (Butterfly) and (b) Astro.

b1x = (b1y + b2y) tan θ = by tan θ. (28)

In the general case, any hysteresis loop can be decomposed into an
infinite number of loops, since according to the above method, each
loop from the pair of added loops can always be represented as a pair
of some other loops.
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FIG. 7. Tilted Classical loop (green) as a result of the addition of two hysteresis
loops—the loop 1 Leaf (red) and the loop 2 Classical (blue). The Classical loop
tilted by the same angle θ = 15○ at the split point a by means of phase shift Δα1
is shown for comparison as a dotted line.

It is shown in the supplementary material that the result of the
transformation (Δα1 = Δα2 = Δα3 = 0)

x̄(α) = x(α) + by tan θ(sin α − sinn α),

ȳ(α) = y(α),
(29)

built on skewing of the coordinate system by angle θ along the x
axis is equivalent to tilting the loop by addition with a Leaf loop (see
Fig. 7). Figure 8 demonstrates the Classical hysteresis loops tilted at
the split point according to transformation (29).

An additional skewing of the coordinate system by angle κ
along the y axis,

x̄(α) = x(α) + tan θ(bx tan κ + by)(sinα − sinnα),

ȳ(α) = y(α) + bx tan κ(sinα − sinnα),
(30)

allows continuously changing the loop curvature. Figure 9 shows
tilted Classical loops having various curvatures that are built accord-
ing to transformations (30). Transformations (29) are a particular
case of transformations (30).

B. Piecewise-linear and hybrid hysteresis loops
Within the model under consideration, the simplest way of

building piecewise-linear loops is as follows. The period T = 2π
of change of parameter α is divided into the required number k of
intervals, where k is an even integer (k ≥ 4). Continuous values α
in formula (13) are then replaced with values changing with step
T/k so obtaining the x, y coordinates of the points of a piecewise-
linear hysteresis loop. Those coordinates are then connected with

FIG. 8. Tilting the Classical hysteresis loop by skewing the coordinate system by
angle θ along the x axis. The area of all the loops is the same for any oblique
angle θ.

line segments. An example of piecewise-linear loops of three types
Leaf, Crescent (Boomerang), and Classical built for k = 12 (six-linear
loop, k/2 = 6) is given in Fig. 10.

Other methods of obtaining piecewise-linear hysteresis loops
imply replacing the sine and the cosine in the generating func-
tions x(α) and y(α) of model (13) by unit amplitude trapezoidal,
triangular, and rectangular pulses and their combinations.

1. Loops built on trapezoidal pulses
Replacing the sine and the cosine in the generating func-

tions x(α) and y(α) of model (1) with unit-amplitude trapezoidal
pulses trps and trpc, respectively, we can produce piecewise-linear
hysteresis loops built on trapezoidal pulses,

x(α) = a trpm
c α + (bx − a)trpn

s α,
y(α) = by trpsα,

(31)

where trpc(α) = trps(α + T/4); T is the pulse period. The expres-
sions defining the trapezoidal pulses trp are given in Ref. 1 and in
the supplementary material. The simplest loops are obtained when
the upper d and lower D bases of the trapezoidal pulses relate as
D = 3d (T = d + D = 4d). In this case, the shape of loops is inde-
pendent of m. Subtracting the splitting a from bx in (31) allows us to
move the saturation point b from the middle of the horizontal sec-
tion of the loop, where α = T/4, to its canonical position (see Fig. 11);
here, parameter α takes the value of T/8.

Figure 11 shows loops of three types: Leaf (Play without
Whiskers), Crescent (Boomerang), and Classical, which are built
according to formulas (31) (D = 3d). The loop Leaf is piecewise-
linear. The loops Crescent and Classical are hybrid loops since
they combine rectilinear sections and curvilinear ones. If bx = a,
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FIG. 9. Changing the curvature of the Classical hysteresis loop by skewing the
coordinate system by angle κ along the y axis. Tilting the loop at the split point by
angle (a) θ = 15○ and (b) θ = −15○. Loops tilted by any angle θ have the same
areas provided that the other parameters of the loop are the same.

the loops (31) degenerate into rectangular loop (Non-ideal Relay
without Whiskers).

a. Piecewise-linear loops. Taking into account the phase shifts
Δα1, Δα2, and Δα3, Eqs. (31) are written as

FIG. 10. Piecewise-linear hysteresis loops of Leaf (n = 1), Crescent (Boomerang,
n = 2), and Classical (n = 3) types. The number of division intervals k = 12 (six-
linear loop). The areas of the loops are approximately the same.

FIG. 11. Piecewise-linear hysteresis loop Leaf (Play without Whiskers, n = 1),
hybrid Crescent (hybrid Boomerang, n = 2), and hybrid Classical (n = 3) built on
trapezoidal pulses. The area of all the three loops is the same.

x(α) = â trpm
c (α + Δα1) + b̂x trpn

s (α + Δα2),
y(α) = by trps(α + Δα3).

(32)

The corrected parameters â and b̂x are determined by the following
formulas:
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â =
a trpn

s (αb + Δα2 − Δα3) − bx trpn
s (Δα2 − Δα3)

trpm
c (Δα1 − Δα3)trpn

s (αb + Δα2 − Δα3) − trpm
c (αb + Δα1 − Δα3)trpn

s (Δα2 − Δα3)
,

b̂x =
bx trpm

c (Δα1 − Δα3) − a trpm
c (αb + Δα1 − Δα3)

trpm
c (Δα1 − Δα3)trpn

s (αb + Δα2 − Δα3) − trpm
c (αb + Δα1 − Δα3)trpn

s (Δα2 − Δα3)
,

(33)

where αb is equal to T/8 − Δα1 + Δα3, T/8 − Δα1, 3T/8 − Δα2
+ Δα3 and other values depending on the applied ranges of phase
shifts Δα1, Δα2, and Δα3. Formulas (33) for the corrected parame-
ters â and b̂x of the piecewise-linear loops (32) are derived using the
same logic as in the case of smooth loops. With αb = T/4, the work-
ing formulas for the corrected parameters â and b̂x can be obtained
from formulas (16), (19), (21), and (23) valid for smooth loops (13)
by simply replacing the sine and cosine functions with trapezoidal
pulses trps and trpc, respectively.

Figure 12 shows the piecewise-linear hysteresis loops built by
Eqs. (32) using the corrected parameters (33) (m = n = 1). As an
example, the loop Play–Play with different values of phase shift Δα3
is demonstrated in Fig. 13. According to the definition (32), when
a signal of the form x(α) = â trpm

c (α + Δα1) + b̂x trpn
s (α + Δα2) is

applied to the input of a piecewise-linear hysteresis element, trape-
zoidal pulses are produced at the output y(α) with the predefined
phase shift Δα3.

To obtain piecewise-linear loops with gain/attenuation γ,
one should add to (32) an extra term (curve) responsible for
gain/attenuation (m = n = 1),

x̄(α) = x(α),
ȳ(α) = y(α) + tan γ[x(α) − bx trps(α + Δα3)].

(34)

Figure 14 shows loops with gain (γ > 0) and with attenuation (nega-
tive gain γ < 0) built by Eqs. (34). The loops in Fig. 14 with no gain
(γ = 0) correspond to the loops shown in Fig. 12.

Loops of type Play without Whiskers (Leaf) (see Fig. 11) cannot
be tilted at the split point by rotation of the coordinate system. Nev-
ertheless, a gain/attenuation γ can be applied to these loops by using
the rotation (m = n = 1, Δα1 = Δα2 = Δα3 = 0),

x̄(α) =
a tanβ trpcα + (by − bx tan γ)trpsα

tanβ − tan γ
,

ȳ(α) = tanβ(x̄(α) − a trpcα),
(35)

where the loop parameters a, bx, by, and β are interrelated as tan β
= by/(bx − a). The hysteresis loops built on trapezoidal pulses
according to Eqs. (35) are presented in Fig. 15.

Applying a variation of rotation of the coordinate system, the
following transformations are found (m = n = 1, Δα1 = Δα2 = Δα3
= 0),

x̄(α) = x(α),
ȳ(α) = y(α) + a tan γ(trpcα ∣trpsα∣ − trpsα),

(36)

according to which loops Play–Play with Gain without Whiskers9

can be built on trapezoidal pulses (see Fig. 16).

FIG. 12. Piecewise-linear hysteresis loops: (a) Play–Relay–Play (tetra-linear loop), (b) Play–Play (tri-linear loop), and (c) Play–Relay (tri-linear loop) built on trapezoidal pulses
using the phase shifts.
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FIG. 13. Piecewise-linear hysteresis loop Play–Play with different values of phase
shift Δα3.

b. Hybrid loops. Tilting in the split point by phase shift Δα1 is
not appropriate for the hybrid Classical loop (n = 3, 5, . . .) shown
in Fig. 11 because of corners (derivative jumps) that appear at the
curvilinear sections of the loop and because the generating func-
tions x(α), y(α) acquire horizontal sections with the same values
of the parameter α. The following transformation makes it possi-
ble to obtain a loop with the desired tilt β = π/2–θ in the split
point while keeping the curvilinear sections of the loop smooth and
the rectilinear sections of the loop horizontal (m = 1, Δα1 = Δα2

= Δα3 = 0):

x̄(α) = x(α) + by sin θ(trpsα − trpn
s α),

ȳ(α) = y(α).
(37)

Transformation (37) for the hybrid loop is similar to transfor-
mation (29) for the smooth loop. Figure 17 shows hybrid classi-
cal whiskerless hysteresis loops tilted according to transformation
(37).10–12

By applying a series of skewing linear transformations, a uni-
versal formula is obtained (m = 1, Δα1 = Δα2 = Δα3 = 0),

x̄(α) = x(α) + tan θ[(bx − a) tan κ − bx tan γ + by](trpsα − trpn
s α),

ȳ(α) = y(α) + [(bx − a) tan κ − bx tan γ](trpsα − trpn
s α)

+ a tan γ(trpcα trpk
sα − trpn

s α), (38)

which allows building hybrid classical whiskerless loops11,12 (see
Fig. 18) on the basis of trapezoidal pulses. The resulting loops have
the required slope β at the split point (β = π/2–θ), the required
inclination (gain/attenuation) γ of the rectilinear section, and the
required curvature κ of the curvilinear section. Introducing addi-
tional parameters k = 2, 4, . . . and κ besides n = 3, 5, . . . to con-
trol the curvature is dictated by the fact that the use of phase shifts
Δα2 and Δα3 would lead to the appearance of undesirable cor-
ners in the curvilinear sections of the loop. In formulas (38), the
function trpk

sα could be replaced with ∣trpk
sα∣, where k is any pos-

itive number. In case γ = κ = 0, formulas (38) degenerate into
formulas (37).

If necessary, formulas (31)–(38) can be expressed through tri-
angular pulses by using the following representation of trapezoidal
pulses as a sum of two triangular pulses (D = 3d, T = d + D):

trps(α) = tris(α +
T
8
) + tris(α −

T
8
),

trpc(α) = tric(α +
T
8
) + tric(α −

T
8
).

(39)

FIG. 14. Piecewise-linear hysteresis loops with gain/attenuation γ: (a) Play–Relay–Play, (b) Play–Play, and (c) Play–Relay built on trapezoidal pulses using the phase shifts.
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FIG. 15. Piecewise-linear hysteresis loops: (a) Play with Gain without Whiskers (parallelogram, bi-linear, elastic–plastic loop), (b) Play with Attenuation without Whiskers, (c)
Play without Whiskers, (d) Non-ideal Relay with Gain without Whiskers, (e) Non-ideal Relay with Attenuation without Whiskers, and (f) Non-ideal Relay without Whiskers
(rectangular loop) built on trapezoidal pulses.

2. Loops built on triangular pulses
Besides trapezoidal pulses trp, formulas (13) can operate with

triangular pulses tri,1 which are particular cases of trapezoidal pulses
(d = 0, T = D),

x(α) = â trimc (α + Δα1) + b̂x trins (α + Δα2),
y(α) = by tris(α + Δα3).

(40)

The working formulas for the corrected parameters â and b̂x are
obtained from formulas (16), (19), (21), and (23) valid for smooth
loops (13) by simply replacing the sine and cosine functions with
triangular pulses tris and tric, respectively.

Figure 19(a) presents a piecewise-linear loop Leaf (m = n = 1)
built according to formulas (40) with various positive values of phase
shift Δα1 (Δα2 = Δα3 = 0). With Δα1 = 0.8, the loop is a variety of
the loop Play with Gain without Whiskers [see Fig. 20(b)]; with Δα1
= 1.5, the loop is a variety of the loop Play without Whiskers [see
Fig. 20(f)]. As can be seen from Fig. 19(a), it is possible to adjust the
gain γ using phase shift Δα1.

The angles β and γ shown in the figure are determined by the
formulas:

tanβ =
by

b̂x − â
=

by tan γ
by − 2â tan γ

=
by tricΔα1

a(trisΔα1 − 1) + bx tricΔα1
,

tan γ =
by

b̂x + â
=

by tanβ
by + 2â tanβ

=
by tricΔα1

a(trisΔα1 + 1) + bx tricΔα1
.

(41)

Using formulas (41), Eqs. (40) can be expressed, if necessary,
through the angles β and/or γ. With bx = a, the loop (40) degenerates
into the loop variety Non-ideal Relay with Gain without Whiskers
[see Fig. 20(h)].

Just as it was done above for loops (35) built on trapezoidal
pulses, the gain/attenuation γ of loops (40) can be changed by
rotating the coordinate system (m = n = 1, Δα1 = Δα2 = Δα3 = 0),

x̄(α) = bx trisα + (
2a tanβ

tanβ − tan γ
− bx)tricα,

ȳ(α) = by trisα +
(a + bx) tan γ − by

tanβ − tan γ
tanβ tricα,

(42)
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FIG. 16. Piecewise-linear hysteresis loop Play–Play with Gain without Whiskers
built on trapezoidal pulses.

where the loop parameters a, bx, by, and β are interrelated as
tan β = by/(bx − a). With the help of Eqs. (42), it is possible to build
piecewise-linear loops shown in Figs. 20(b), 20(d), 20(f), 20(h), 20(j),
and 20(l).

Another method to describe the Leaf type loop is based on the
function inverse to (40) (m = n = 1),

FIG. 17. Hybrid classical whiskerless hysteresis loops with the specified slope
β = π/2–θ at the split point. The loops are built on trapezoidal pulses. The area
of all the loops is the same regardless of θ.

FIG. 18. Hybrid classical whiskerless hysteresis loops with specified slope
β = π/2–θ, gain/attenuation γ, and curvature κ. (a) Various gains γ for fixed β and
κ and (b) various curvatures κ for fixed β and γ. The loops are built on trapezoidal
pulses.

x(α) = bx tris(α + Δα3),

y(α) = b̂y[
â

â − bx
tric(α + Δα1) + tris(α + Δα2)].

(43)

The corrected parameters â and b̂y in (43) are determined by the
following formulas:
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â =
bx tris(αa + Δα2 − Δα3)

tric(αa + Δα1 − Δα3) + tris(αa + Δα2 − Δα3)
,

b̂y =
by tric(αa + Δα1 − Δα3)

tric(αa + Δα1 − Δα3)tric(Δα2 − Δα3) + tris(αa + Δα2 − Δα3)tris(Δα1 − Δα3)
,

(44)

where αa = aT/(4bx) is the value of parameter α at split point a. With
bx > 2a (Δα1 = Δα2 = Δα3 = 0), the loop (43) is a variety of the loop
Play with Gain without Whiskers [see Fig. 20(b)]. With bx < 2a (Δα1
= Δα2 = Δα3 = 0), the loop (43) is a variety of the loop Play with
Attenuation without Whiskers [see Fig. 20(d)]. With bx = 2a (Δα1
= Δα2 = Δα3 = 0), the loop (43) degenerates into the loop variety
Play without Whiskers [see Fig. 20(f)].

Figure 19(b) shows a Leaf piecewise-linear loop built by formu-
las (43) at different values of phase shift Δα1 (bx > 2a, Δα2 = Δα3
= 0). As can be seen from the figure, it is possible to adjust the gain
γ using phase shift Δα1. The angles β and γ shown in the figure are
determined by the following formulas:

tanβ =
b̂y

bx − â
=
bx tan γ
bx − 2â

=
by[tric(αa + Δα1) + tris αa]

bx[tric(αa + Δα1) + trisαatrisΔα1]
,

tan γ =
b̂y(bx − 2â)
bx(bx − â)

=
(bx − 2â) tanβ

bx

=
by[tric(αa + Δα1) − tris αa]

bx[tric(αa + Δα1) + tris αa trisΔα1]
.

(45)

Using formulas (45), Eqs. (43) can be expressed, if necessary,
through the angles β and/or γ. If we set phase shift Δα1 equal to −1.0
(γ = 41○), −0.73 (γ = 25○), and −0.5 (γ = 0○) then we can built by
formulas (43) the same family of loops having the same parameters
a, bx, and by (bx < 2a, Δα2 = Δα3 = 0) as in Fig. 19(a), where the
loops have been built by formulas (40). Setting nonzero phase shifts
Δα1, Δα2, and Δα3, we can build the piecewise-linear loops shown in
Figs. 20(b), 20(d)–20(f), 20(k), and 20(l) by Eqs. (43).

Moving the split parameter a in formulas (43) into the argu-
ment of the triangular pulse function, a system of equations can be
obtained that describe the piecewise-linear hysteresis loop Play with
Gain (Δα1 = Δα2 = Δα3 = 0),

x(α) = bx trisα,

y(α) = (by − bx tan γ)[tris(α −
αa tanβ

tanβ − tan γ
+
T
8
)

− tric(α −
αa tanβ

tanβ − tan γ
+
T
8
)] + bx tan γ trisα.

(46)

The loop parameters bx, by, β, and γ relate as follows: 2by/bx = tan β
+ tan γ. This relationship makes Eqs. (46) much less universal than
Eqs. (47) or (54). Nevertheless, Eqs. (46) can be used for building
loops similar to the ones shown in Figs. 20(a)–20(f).

FIG. 19. Piecewise-linear loop Leaf (bi-linear loop, Play without Whiskers) at dif-
ferent values of phase shift Δα1 built on triangular pulses by using (a) base and
(b) inverse to base equations.
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FIG. 20. Piecewise-linear hysteresis loops: (a) Play with Gain, (b) Play with Gain without Whiskers (parallelogram loop), (c) Play with Attenuation, (d) Play with Attenuation
without Whiskers, (e) Play (backlash), (f) Play without Whiskers, (g) Non-ideal Relay with Gain, (h) Non-ideal Relay with Gain without Whiskers, (i) Non-ideal Relay with
Attenuation, (j) Non-ideal Relay with Attenuation without Whiskers, (k) Non-ideal Relay (Schmitt trigger), and (l) Non-ideal Relay without Whiskers (rectangular loop) built on
triangular pulses.
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a. The universal formula of a piecewise-linear loop. In the
present study, the following general expression is obtained, which
describe a piecewise-linear hysteresis loop Play with Gain13 [see
Fig. 20(a)],

x(α) = bx trisα,

y(α) = (by − bx tan γ)trps(α −
αa tanβ

tanβ − tan γ
) + bx tan γ trisα,

(47)

in which the upper base d of the trapezoidal pulses trps is defined
according to the formula,

d =
T(bx tanβ − by)

2bx(tanβ − tan γ)
, (48)

and the lower base D according to the formula D = T − d. Step-
by-step derivation of formulas (47) is given in the supplementary
material.

The piecewise-linear loop (47) is built using a combination of
triangular and trapezoidal pulses. If necessary, the trapezoidal pulses
trps in (47) can be represented as a sum of two triangular pulses,

trps(α) =
tris(α + d

2 ) + tris(α − d
2 )

tric(
αa tan β

tan β−tan γ + d
2) + tric(

αa tan β
tan β−tan γ −

d
2)

. (49)

Equations (47) are universal since they allow us to obtain the
whole set of piecewise-linear loops of Play and Relay shown in
Fig. 20. For example, letting γ = 0○ in (47) and (48), we obtain a
system of equations for building a hysteresis loop of Play (backlash)
type13,14 [see Fig. 20(e)],

x(α) = bx trisα,
y(α) = by trps(α − αa),

(50)

in which the upper base d of the trapezoidal pulses trps is defined by
the following formula:

d =
T(bx tanβ − by)

2bx tanβ
. (51)

Assuming β = 90○ in (47) and (48), one can obtain the system
of equations for building a Non-ideal Relay with Gain15 hysteresis
loop [see Fig. 20(g)],

x(α) = bx trisα,
y(α) = (by − bx tan γ)rects(α − αa) + bx tan γ trisα,

(52)

in which the upper base d and the lower base D of the trapezoidal
pulses are the same and equal to T/2. The latter means degeneration
of the trapezoidal pulses trps in the generating function y(α) into the
rectangular pulses rects with a 50% duty cycle.

Assuming γ = 0○ in (52), one can obtain the system of equations
for building a Non-ideal Relay hysteresis loop [see Fig. 20(k)],

x(α) = bx trisα,
y(α) = by rects(α − αa).

(53)

To obtain loops without whiskers [see Figs. 20(b), 20(d), 20(f),
20(h), 20(j), and 20(l)], one of the parameters a, bx, by, and β in
formulas (47), (50), (52), and (53) should be expressed through
the remaining parameters according to the relation tan β = by/
(bx − a). To obtain loops with attenuation16,17 [see Figs. 20(c), 20(d),
20(i), and 20(j)], the negative angle γ should be set in formulas (47)
and (52).

Figure 21 shows examples of decomposition of piecewise-
linear loops Play with Gain (b1x = a1bx/a, b1y = a1by/a, β1 = β,
γ1 = γ, a2 = a − a1, b2x = bx − b1x, b2y = by − b1y, β2 = β, γ2
= γ), Play {b1x = a1bx/a, tan β1 = Tb1y/[(T − 2d)b1x], γ1 = 0,
a2 = a − a1, b2x = bx − b1x, b2y = by − b1y, tan β2 = Tb2y/[(T − 2d)b2x],
γ2 = 0}, Non-ideal Relay with Gain (b1x = a1bx/a, β1 = 90○, γ1
= γ, a2 = a − a1, b2x = bx − b1x, b2y = by − b1y, β2 = 90○, γ2
= γ), and Non-ideal Relay (b1x = a1bx/a, β1 = 90○, γ1 = 0, a2 = a
− a1, b2x = bx − b1x, b2y = by − b1y, β2 = 90○, γ2 = 0) into two
loops of the same type as the loop under decomposition. Since
each of the loops of the decomposition, in turn, can be decom-
posed in a similar way then, like the smooth loops, piecewise-linear
loops can be represented in the general case as an infinite sum of
loops.

Figure 22 shows examples of building more complex piecewise-
linear loops: Play–Play–Play with Gain13 (p = 2.4, b1x = bx/p, b1y
= by/p, β1 = β, γ1 = γ, a2 = a − a1, b2x = bx − b1x, b2y = by − b1y,
β2 = β, γ2 = γ, where p is an arbitrary number in the general
case), Play–Play–Play (p = 2.4, b1x = bx/p, b1y = by/p, β1 = β, γ1
= 0, a2 = a − a1, b2x = bx − b1x, b2y = by − b1y, β2 = β, γ2

= 0), Play–Relay–Play with Gain18 (β1 = β, γ1 = 0, a2 = a − a1, b2x
= bx − b1x, b2y = by − b1y; a1, β2 and γ2 are deter-
mined by numerical solution of a system of equations), and
Play–Relay–Play (β1 = β, γ1 = 0, a2 = a − a1, b2x = bx
− b1x, b2y = by − b1y, γ2 = 0; a1 and β2 are determined
by numerical solution of a system of equations). The loops
of the Play–Play–Play type are obtained by combining a pair
of loops of Play type; the loops of the Play–Relay–Play type
are obtained by combining loops of Non-ideal Relay type and
Play type. The details of composition/decomposition of the
piecewise-linear hysteresis loops presented in Figs. 21 and 22
are given in the supplementary material, and variations of these
loops with attenuation and/or without whiskers can also be
found there.

Detection of the loops shown in Fig. 22 during physical mea-
surements may indicate that in the system under consideration,
there are two different hysteresis processes superimposed on each
other.

b. Generating function with a threshold element. In addition to
formulas (47), to describe the piecewise-linear hysteresis loop Play
with Gain [see Fig. 20(a)], one can apply equations, in which the
combination of triangular pulses in the generating function y(α) is
passed through a threshold element Hr,

x(α) = bxtrisα,

y(α) = 2(by − bx tan γ)[Hr(
a tanβ tricα + bx tan γ − by
(a − bx) tanβ + bx tan γ

+ trisα) −
1
2
]

+ bx tan γ trisα.

(54)
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FIG. 21. Decomposition of the piecewise-linear hysteresis loop (green): (a) Play with Gain, (b) Play, (c) Non-ideal Relay with Gain, and (d) Non-ideal Relay into two loops of
the same type as the loop under decomposition.

The threshold element Hr is a real (non-ideal) unit step function
defined as follows:

Hr(t) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0, t < 0,
t
tf

, 0 ≤ t ≤ tf ,

1, t > tf ,

(55)

where tf is a “front duration” of the real step function. The parameter
tf is determined by the loop parameters a, bx, by, β, and γ according
to the following formula:

tf =
2(bx tan γ − by)

(a − bx) tanβ + bx tan γ
, (56)

and, vice versa - any of the mentioned parameters can be deter-
mined by this relationship by fixing the front duration tf of the step
function. With tf → 0 (β → 90○), the function Hr degenerates into
the ideal unit step function H (Heaviside function). In that case,
Non-ideal Relay loops are formed [see Figs. 20(g)–20(l)].

As a rule, Eqs. (54) allow us to obtain the whole set of types
of the piecewise-linear loops of Play and Relay shown in Fig. 20.
However, for some values of parameters a, by, β, and γ, additional
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FIG. 22. Piecewise-linear hysteresis loops: (a) Play–Play–Play with Gain, (b) Play–Play–Play, (c) Play–Relay–Play with Gain, and (d) Play–Relay–Play obtained by addition
of two loops of type (a) and (b) Play and (c) and (d) Relay and Play.

corners [see Fig. 23, cf. Fig. 20(a)] may appear turning the loop Play
into the loop Play–Play.9

If necessary, formulas (40)–(47), (50), and (52)–(54) can be
expressed through trapezoidal pulses by using the following rep-
resentation of triangular pulses as a sum of two trapezoidal pulses
(D = 3d, T = d + D):

tris(α) =
1
2

trps(α +
T
8
) +

1
2

trps(α −
T
8
),

tric(α) =
1
2

trpc(α +
T
8
) +

1
2

trpc(α −
T
8
).

(57)

3. Shifted loops

In general, the shifted piecewise-linear loops (see Fig. 24) are
obtained by adding two piecewise-linear loops (47). In such loops,
the split parameters a1 and a2 set the horizontal size w of the shifted
section; the saturation parameter b1y defines vertical position h of
this section; the gain γ sets the slope of the section; and the angle β1
(β2 = β1) defines such a slope of the loops being added that the total
slope β of the resultant loop would be equal to the preset slope.

For the loop Shifted Play with Gain18,19 [see Fig. 24(a)], the
splitting a can be found by the formula,
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FIG. 23. Piecewise-linear hysteresis loop Play–Play with Gain. The additional
corners occur when the splitting a and the tilting β become less of a certain value.

a = ah −
h

tanβ
+
w
2
(

tan γ
tanβ

− 1), (58)

and the splitting a1—by the formula,

a1 =
(ah − w

2 )(tanβ1 − tan γ) + bx tan γ − 2b1y

2 tanβ1
. (59)

The other parameters a2, b1y, and β1 are determined numerically by
solving the following system of equations (b1x = bx/2, γ1 = γ, b2x = bx
− b1x, b2y = by − b1y, β2 = β1, and γ2 = γ):

x̄(αe2(a2) −
T
2
) − x̄(αd1) = w,

ȳ(αah , b1y) = h,

ȳ(αd2(β1)) − ȳ(αe2(β1) −
T
2 )

x̄(αd2(β1)) − x̄(αe2(β1) −
T
2 )
= tanβ,

(60)

where x̄(α) and ȳ(α) are generating functions of the shifted loop;
αd1 and αah are the values of parameter α in points d1 and ah of
the shifted loop, respectively; αe2(a2), αe2(β1), and αd2(β1) are the
dependences of parameter α in points e2, d2 of the shifted loop from
variables a2 and β1, respectively; and ȳ(αah , b1y) is the dependence of
the generating function on b1y in point ah (α = αah ).

Figures 24(b)–24(d) show examples of the shifted loops: Play,13

Non-ideal Relay with Gain,20 and Non-ideal Relay,21 which are spe-
cial cases of the loop Shifted Play with Gain. The other variations
of the shifted loops with attenuation and/or without whiskers are
given in the supplementary material. The detection of the shifted

loop during the physical measurements may indicate the simulta-
neous existence of two separate hysteresis processes superimposed
on each other in the system under consideration (for example, there
is a film of two layers, the magnetic properties/states of which are
different19,21).

a. Three-level loops. The three-level loops are the special case
of the shifted loops (see Fig. 25). Three-level loops appear when
negative splitting a is set and the next equation is satisfied,

w =
2a tanβ

tan γ − tanβ
. (61)

The description of three-level loops with attenuation and/or with no
whiskers is given in the supplementary material. The detection of
the three-level loop during the physical measurements may serve as
a sign of simultaneous action of two separate hysteresis processes
superimposed on each other in the system under consideration.

C. Double hysteresis loops
1. Linking loops at the saturation point

To make the description of double hysteresis loops more accu-
rate, the method suggested in Ref. 1 has been improved. In par-
ticular, according to the improved method, the equations for a
double smooth loop non-self-crossing in the origin of coordinates
(0-shaped loop) are as follows (α = 0, . . ., 2π):

¯̄x(α) = x(2α −
π
2

sgn(π − α) − Δα3) + bx sgn(π − α)

= (2rectα − 1)(x(2α − Δα3 −
π
2
) + bx),

¯̄y(α) = y(2α −
π
2

sgn(π − α) − Δα3) + by sgn(π − α)

= (2rectα − 1)(y(2α − Δα3 −
π
2
) + by),

(62)

where sgn α = α/|α| is the signum function; rect α = H(α) −H(α − π)
is a π-wide rectangular pulse. Double loop (62) is formed by link-
ing two loops in the saturation point b, where the generating
function y(α) reaches its maximum value by. Figure 26(a) shows
an example of double smooth non-self-crossing loop22 built by
formulas (62).

According to (62), movement along the double loop starts at
the point (0, 0), goes on counterclockwise first by the top loop then
by the bottom one, and finishes at the point (0, 0). The double loop
(62) differs from the one used before in that the starting point of
the second loop coincides with the end point of the first one, and
the end point of the second loop with the starting point of the first
one. Thus, the double loop (62) can be drawn continuously, “with-
out lifting the pencil from the paper,” as the parameter α changes
from 0 to 2π.

The loop with a self-crossing in the origin of coordinates
(8-shaped loop) can be built according to the following formulas
(α = 0, . . ., 2π):
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FIG. 24. Shifted piecewise-linear hysteresis loops: (a) Play with Gain, (b) Play, (c) Non-ideal Relay with Gain, and (d) Non-ideal Relay obtained by addition of two loops of
type (a) and (b) Play and (c) and (d) Relay.

¯̄x(α) = x((2α −
π
2
)sgn(π − α) − Δα3) + bx sgn(π − α)

= rectα(x(2α − Δα3 −
π
2
) + bx)

+ (1 − rectα)(x(
π
2
− Δα3 − 2α) − bx),

¯̄y(α) = y((2α −
π
2
)sgn(π − α) − Δα3) + by sgn(π − α)

= rectα(y(2α − Δα3 −
π
2
) + by)

+ (1 − rectα)(y(
π
2
− Δα3 − 2α) − by).

(63)

The loops (62) and (63) have no appearance differences.
Double non-self-crossing and self-crossing piecewise-linear

loops are built by formulas (62) and (63), respectively, replacing π
with T/2 (α = 0, . . ., T). An example of double piecewise-linear non-
self-crossing loop15,18,23 built by formula (62) with Δα3 = 0 is shown
in Fig. 26(b). The self-crossing loop has the same appearance.

2. Linking loops at the point xmax

Besides linking two loops in the saturation point b, the loops
can be linked at the point, where generating function x(α) reaches its
maximum xmax. In order to determine the value of parameter αmax
for which x(αmax) = xmax, the equation dx(α)/dα = 0∣α=αmax should
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FIG. 25. Three-level piecewise-linear hysteresis loops: (a) Play with Gain, (b) Play, (c) Non-ideal Relay with Gain, and (d) Non-ideal Relay obtained by addition of two loops
of type (a) and (b) Play and (c) and (d) Relay.

be numerically solved. In the expanded form, it can be written as
follows:

mâ sin(αmax + Δα1)cosm−1
(αmax + Δα1) − nb̂x cos(αmax + Δα2)

× sinn−1
(αmax + Δα2) = 0. (64)

Double non-self-crossing loops linking in the xmax point are built
according to the following formulas:

¯̄x(α) = x(2α −
π
2
(sgn(π − α) + 1) + αmax) + x(αmax)sgn(π − α)

= (1 − 2rectα)(x(2α + αmax) − x(αmax)),

¯̄y(α) = y(2α −
π
2
(sgn(π − α) + 1) + αmax) + y(αmax)sgn(π − α)

= (1 − 2rectα)(y(2α + αmax) − y(αmax)).

(65)

Double self-crossing loops linking in the xmax point are built accord-
ing to the following formulas:
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FIG. 26. Double (a) smooth and (b) piecewise-linear hysteresis loop formed by
linking two loops (a) Classical and (b) Play with Gain in the saturation point b. In
the linking point, the loop can be made both non-self-crossing and self-crossing.

¯̄x(α) = x((2α −
π
2
)sgn(π − α) + αmax −

π
2
) + x(αmax)sgn(π − α)

= (1 − rectα)(x(αmax − 2α) − x(αmax))

− rectα(x(2α + αmax) − x(αmax)),

¯̄y(α) = y((2α −
π
2
)sgn(π − α) + αmax −

π
2
) + y(αmax)sgn(π − α)

= (1 − rectα)(y(αmax − 2α) − y(αmax))

− rectα(y(2α + αmax) − y(αmax)).

(66)

A double non-self-crossing loop built by formula (65) is shown in
Fig. 27. A double self-crossing loop built by formula (66) has the
same appearance.

3. Replacement of the horizontal splitting
with the vertical one

The simplest way to get double non-self-crossing loops of the
Propeller type24 is based on representation (2), where instead of the
splitting a (a ≈ 0) along x, the splitting ay along y is performed.
The splitting curve equations in this case are as follows: x2(α)
= a cosm α, y2(α) = ay cosm α. From equation y(αd1,2 ) = by/2 written
for a half-height of the saturation point by (any desired value can be
used instead of half-height), one can find the following dependencies
(m = 1):

αd1,2(ay) = arccos
by(ay ±

√
4a2

y + 3b2
y)

2(a2
y + b2

y)
. (67)

After that, by solving the equation numerically,

x(αd1(ay)) − x(αd2(ay)) = 2ad, (68)

we determine the vertical split value ay such that the horizontal split
value ad of the double loop at the half-height of the saturation point
by is equal to the specified value. Figure 28 shows a double loop
Propeller obtained according to the described method. The working
expressions for the case m = 3, 5, . . . are given in the supplementary
material.

FIG. 27. Double smooth hysteresis loop formed by linking two loops Classical in
the point xmax . In the linking point, the loop can be made both non-self-crossing
and self-crossing.
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FIG. 28. Double non-self-crossing hysteresis loop of Propeller type formed by
replacement of the horizontal splitting with the vertical one.

4. Pinching a loop in the origin of coordinates
Double non-self-crossing loops of Propeller type can be formed

by “pinching” a loop in the origin of coordinates [see Fig. 29(a)].
The pinching is achieved by raising the generating functions x(α)
and y(α) to odd powers k and l according to expressions (27). The
parameter αd can be found from equation ȳ(αd) = by/2 written for a
half-height of the saturation point by (any desired value can be used
instead of half-height),

αd = arcsin
1

l
√

2Bbl−1
y

. (69)

Solving the equation

x̄(αd) − x̄(π − αd) = 2ad, (70)

a split value a can be determined such that the split value ad of the
double loop at the half-height of the saturation point by is equal to
the specified value. The analytical solution of Eq. (70) for k = 3 is as
follows:

a =

3

√

2A(ad +
√

4A2b6
xsin6nαd + a2

d)
2
− 2Ab2

xsin2nαd

cosmαd
3

√

4A2(ad +
√

4A2b6
xsin6nαd + a2

d)

. (71)

There is another method of building double non-self-crossing
loops by means of loop pinching. This method implies setting the
splitting a to zero in formula (13) and the phase shift Δα2 (or
Δα3) to a non-zero value. With such loops, the shift Δα2 (or Δα3)

FIG. 29. Double non-self-crossing hysteresis loops of Propeller type formed by
pinching a loop at the point of coordinate origin by means of (a) exponentiation
and (b) zero splitting a and a phase shift Δα2.

serves as a splitting a. Figure 29(b) shows an example of a double
non-self-crossing loop of Propeller type24,25 obtained by pinching.
The parameter αd = π/6 can be found from equation y(αd) = by/2
written for a half-height of the saturation point by (any desired
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value can be used instead of half-height). Solving numerically
the equation

x(αd) − x(π − αd) = 2ad, (72)

it is possible to determine such a value of the phase shift Δα2 (or
Δα3) that the split value ad of the double loop at the half-height of
the saturation point by is equal to the specified value.

5. Double piecewise-linear loop as a special case
of the piecewise-linear shifted loop

By setting splitting a to 0, the shifted loop (see Sec. II B 3)
degenerates into the double non-self-crossing loop Play with Gain26

[see Fig. 30(a)]. Beside zero splitting, setting the height of the shifted
section according to the formula h = w tan γ/2 allows us to obtain
the double non-self-crossing loop Play with Gain with no bridge
connection18,23 [see Fig. 30(b)]. Double non-self-crossing loops Play,
Relay with Gain, and Relay having bridge connection and having no
bridge connection as well as variations of these loops with attenua-
tion and/or without whiskers are given in the supplementary mate-
rial. Due to the way of formation of this double loop, consequently,
detection of such loops during physical measurements may serve as
a sign of simultaneous action of two separate hysteresis processes
superimposed on each other in the system under consideration.

D. Triple hysteresis loops
1. Linking loops at the saturation points

A triple loop can be assembled of three loops—one central loop
and two outside loops. Triple smooth loops linked at the saturation
points b are built according to the following formulas (α = 0, . . ., 2π):

¯̄̄x(α) = (rectα + rect(α − π))x1(3α −
π
2
) + (rectα + rect(α − π) − 1)

× [x2(±3α −
π
2
) − (b1x + b2x)sgn(π − α)],

¯̄̄y(α) = (rectα + rect(α − π))y1(3α −
π
2
) + (rectα + rect(α − π) − 1)

× [y2(±3α −
π
2
) − (b1y + b2y)sgn(π − α)],

(73)

where x1(α) and y1(α) are equations of the central loop; x2(α)
and y2(α) are equations of the outside loops; b1x and b1y are
coordinates of the saturation point of the central loop; b2x and
b2y are coordinates of the saturation points of the outside loops;
rect α = H(α) −H(α − π/3) is a π/3-wide rectangular pulse.

When assembling loops (73), the condition γ1 = γ2 is usually
met, where γ1 and γ2 are slope angles of tangents to the unsplit
(a1 = 0) central loop and the unsplit (a2 = 0) outside loops, respec-
tively, at the saturation point b1. The slope angles γ1 and γ2 of the
tangents are defined by the following formulas:

γ1 = arctan
b1y

n1b1x
,

γ2 = arctan
b2y

n2b2x
.

(74)

In case the argument 3α of functions x2(α), y2(α) in Eqs. (73) is
used with the plus sign, a non-self-crossing loop is obtained, and in

FIG. 30. Double piecewise-linear non-self-crossing hysteresis loops Play with Gain
(a) bridge-connected and (b) no bridge-connected. The loops are obtained as a
result of addition of two single loops Play with Gain.

the case of the minus sign—a self-crossing loop. Non-self-crossing
and self-crossing loops have the same appearance. The central and
outside loops may differ in type. Figure 31(a) shows a triple smooth
non-self-crossing loop built by Eqs. (73). The loop consists of the
central Classical loop (1) (a1 = a) and a pair of outside Classical
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loops (1) [b2x = (bx − b1x)/2, b2y = n2b2x tan γ1, γ2 = γ1]. The for-
mulas for triple loops linked in the xmax points are presented in the
supplementary material.

Triple non-self-crossing and self-crossing piecewise-linear
loops27 are built by formula (73) by replacing π with T/2

FIG. 31. Triple (a) smooth and (b) piecewise-linear hysteresis loop formed by link-
ing three loops: (a) Classical and (b) Play with Gain in the saturation points b. In
the linking points, the loop can be made both non-self-crossing and self-crossing.

(α = 0, . . ., T). Figure 31(b) shows a triple piecewise-linear non-
self-crossing loop built by Eqs. (73). The loop consists of the cen-
tral Play with Gain loop (47) (a1 = a) and a pair of outside Play
with Gain loops (47) [b2x = (bx − b1x)/2, b2y = (by − b1y)/2,
γ2 = γ1].

FIG. 32. Simulation of a single Classical (a) smooth and (b) hybrid loop with long
whiskers by means of a triple non-self-crossing hysteresis loop. Whiskers are the
outside pair of (a) smooth and (b) piecewise-linear unsplit loops of Leaf type.
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2. Loops with arbitrarily long whiskers

Triple hysteresis loops (73) are useful for producing sin-
gle smooth24,28 or single hybrid14 hysteresis loops having long
whiskers. As a reminder, long whiskers in model (1) can be
obtained by increasing the power m. However, the loop curva-
ture is also changing considerably at the same time. Figure 32(a)
shows a simulation of a single smooth loop Tilted Classical with

long whiskers by using a triple non-self-crossing smooth loop
(73). The triple loop consists of the central Tilted Classical loop
(30) (a1 = a, θ1 = θ) and whiskers, which are formed from a
pair of the outside unsplit loops of Leaf type (1) [a2 = 0, b2x
= (bx − b1x)/2, b2y = (by − b1y)/2, m2 = 3, n2 = 1] oriented at the angle
γ2 = arctan(b2y/b2x).

The required curvature κ1 of the loop is determined by the
following formula:

κ1 = arctan
b1y[tan θ1(1 − n1)(by − b1y) − bx + b1x] + n1b1x(by − b1y)

b1x(n1 − 1)[tan θ1(by − b1y) − bx + b1x]
. (75)

Formula (75) is derived from the condition γ1 = γ2, where γ1 and γ2
are slopes of the tangents at the unsplit (a1 = 0) central loop and the
unsplit (a2 = 0) outside loops, respectively, at the saturation point b1.
From formula (75), for some arbitrary value κ1, one can determine
the corresponding value θ1 or for arbitrary values bx, κ1, and θ1—the
corresponding value by.

Figure 32(b) shows an example of building hybrid tilted Classi-
cal loop with whiskers6,14 out of three loops. The target loop consists
of the central hybrid tilted Classical whiskerless loop (38) (a1 = a,
b1y = by − 2b2y, θ1 = θ, γ1 = γ, κ1 = κ) and whiskers, which are
formed from a pair of outside unsplit piecewise-linear loops Play
with Gain without Whiskers (40) [a2 = 0, b2x = (bx − b1x)/2, b2y
= b2x tan γ2, m2 = n2 = 1, γ2 = γ1]. Due to the relocation of the
saturation point b from position α = T/4 to position α = T/8
(Δα = T/8) in (31), besides replacing π with T/2 in formulas (73),
value T/8 should be subtracted from the arguments of the functions
x1 and y1. Piecewise-linear loops with whiskers of any length can be
built directly by Eqs. (47).

3. Adding vertical splitting
The simplest way to get triple self-crossing loops of the Classical

type is based on representation (2), in which apart from the splitting
ax along x, the additional splitting ay along y is performed. The split-
ting curve equations in this case are as follows: x2(α) = ax cosm α and
y2(α) = ay cosm α. Taking into account the additional splitting, the
equations of the triple loop are written as

x(α) = axcosmα + b̂xsinnα,

y(α) = aycosmα + b̂y sinα,
(76)

where parameters ax, ay, b̂x, and b̂y are determined according to the
following formulas (m = 1):

ax =
acosnαa − bxsinnαa
sinn+1αa + cosn+1αa

,

ay = −by sinαa,

b̂x =
a sinαa + bx cosαa
sinn+1αa + cosn+1αa

,

b̂y = by cosαa,

(77)

where αa is the value of parameter α at the split point a. Negative
αa sets a value of foldover of the triple loop. The working expres-
sions for the case m = 3, 5, . . . are given in the supplementary
material. As it follows from formulas (77), the triple loop degen-
erates into a regular Classical loop with αa = 0. By setting αa > 0,
it is possible to change the shape and the curvature of a single
loop.

Figure 33 shows a triple loop of the Classical type24,28 obtained
according to the described method. It is worth noting that, assum-
ing splitting a = 0, the triple self-crossing loop degenerates into
a double non-self-crossing loop of the Propeller type (see also
Sec. II C 3).

FIG. 33. Triple smooth self-crossing hysteresis loop of the Classical type formed
as a result of an additional vertical splitting.
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4. Squeeze causing a foldover
According to the improved model (13), the triple self-crossing

loops are formed by setting up a negative phase shift Δα2
(or positive Δα3) that “squeezes” the loop so tight that a foldover
appears. Figure 34 shows an example of a triple loop of the Clas-
sical type24,28 obtained by the described method. It is worth noting
that, assuming splitting a = 0, the triple self-crossing loop degener-
ates into a double non-self-crossing loop of the Propeller type (see
Sec. II C 4).

5. Triple piecewise-linear loop as a special case
of the piecewise-linear shifted loop

A triple self-crossing loop (see Fig. 35) can be obtained from
the shifted loop (see Sec. II B 3). To do this, the splitting a must be
negative, and the horizontal size w of the shifted section of the loop
must exceed the value w defined by formula (61). Triple self-crossing
loops Play, Relay with Gain, and Relay as well as variations of these
loops with attenuation and/or without whiskers are given in the sup-
plementary material. Due to the way of formation of this triple loop,
consequently, detection of such loops during physical measurements
may serve as a sign of simultaneous action of two separate hys-
teresis processes superimposed on each other in the system under
consideration.

E. Area of a hysteresis loop
The area of a hysteresis loop characterizes energy losses in a

piezoelectric/ferromagnetic material while applying an alternating

FIG. 34. Triple smooth self-crossing hysteresis loop of the Classical type formed
as a result of “squeezing” by phase shift Δα2.

FIG. 35. Triple piecewise-linear self-crossing hysteresis loop of type Play with Gain
obtained as a result of addition of two single loops Play with Gain.

electric/magnetic field. To find the hysteresis loop area, the following
well-known general formula is used:

S = ∮ x(α)
dy(α)
dα

dα = − ∮ y(α)
dx(α)
dα

dα

=
1
2 ∮

[x(α)
dy(α)
dα

− y(α)
dx(α)
dα
]dα. (78)

According to (78), as a hysteresis loop is being scaled as x̄(α)
= Ax(α), ȳ(α) = By(α), its area changes proportionally to the prod-
uct of the scale factors A and B, i.e., S̄ = ABS. A series of three
hysteresis loops, where the areas are doubling with scaling, is shown
in Fig. 36(a).

1. Smooth loops
By substituting the expressions x(α) and y(α) of the improved

model (13) along with their derivatives into (78) and integration,29

one can obtain

S = [
â

2m−1 C
m−1

2
m cos(Δα1 − Δα3) +

b̂x
2n−1 C

n−1
2

n sin(Δα2 − Δα3)]πby

=
Am1(cosΔα3 − tanϕ1 sinΔα3)

√
tan2ϕ1 + 1

πby

= (A1 cosΔα3 − B1 sinΔα3)πby, (79)

where n is an odd number; A1 and B1 are the Fourier coefficients
for the first harmonic [see Eqs. (25)]. It follows from formula (79)
that the area of the loop (13) is defined by the amplitude Am1 and
the phase φ1 of the first harmonic only; the other harmonics of the
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FIG. 36. The hysteresis loop area (a) is proportional to the product of the scale factors A and B along axes x and y, respectively, (b) is invariant to the saturations bx (restrictive
condition is: Δα2 = Δα3), (c) is invariant to phase shifts Δα1 (restrictive conditions are: m = 1 and Δα2 = Δα3), and (d) is invariant to the saturations bx .

expansion (7) of the generating function x(α) do not affect the area
S in any way.

The loop tilt produced by phase shift Δα1 (m > 1, Δα2 = Δα3
= 0) results in an increase in the loop area S (see Fig. 3). The area S
of a hysteresis loop increases with an increase in phase shift Δα2 (see
Fig. 4). With an increase in phase shift Δα3, the area S decreases (see
Fig. 5).

It follows from formula (79) that with Δα2 = Δα3, the loop area

S =
C

m−1
2

m πaby
2m−1cosm−1(Δα1 − Δα3)

. (80)

Thus, under the specified condition, the loops will have the same
area S regardless of their type (n is absent in the formula) and
saturation bx provided that the parameters a, by, and m are the same
[see Fig. 36(b)].

It follows from formula (80) that in the case of Δα2 = Δα3
= 0, the area of a loop having a negative slope (Δα1 > 0) at the split
point equals to the area of a loop having a positive slope (Δα1 < 0)
at the split point, i.e., S∣+Δα1

= S∣−Δα1
. The inequality S∣∣Δα1−Δα3 ∣>0

> S∣Δα1−Δα3=0 also follows from formula (80). Thus, for any loop
type in the case of Δα2 = Δα3 = 0 (m > 1), the energy losses in the
tilted loops (Δα1 ≠ 0, see Fig. 3) are greater than in the “upright”
ones (Δα1 = 0).
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It also follows from formula (80) that with m = 1 (Δα2 = Δα3),
the loop area

S = πaby. (81)

Thus, under the specified conditions, the loops will have the same
area regardless of their type (n is absent in the formula), satura-
tion bx, and phase shifts provided that the parameters a and by
are the same. Figure 36(c) shows an example of loops of the same
area having different phase shifts Δα1. The formula of areas of the
Leaf (n = 1) loops with m = 1 and Δα1 = Δα3 looks the same as
(81); the areas of these loops are also independent of the values of
saturation bx and the values of phase shifts. Area (81) is numeri-
cally equal to the area of an ellipse having semi-major axis a and
semi-minor axis by.

To calculate the area of the loop based on model (1), the zero
phase shifts Δα1 = Δα2 = Δα3 = 0 should be substituted into formula
(79). As a result, we can obtain

S =
1

2m−1 C
m−1

2
m πaby =

πAm1by
√

tan2ϕ1 + 1
= πA1by. (82)

There is an inaccuracy in Ref. 1 in formula (27) and in the
accompanying text to this formula. Formula (27) is valid for any
n (even or odd). Since formula (27) does not have a solution with
m = 1, formula (82) presented in this paper should be used instead
of it. By the same reason instead of formula (28) from Ref. 1, the cor-
responding formula presented in the supplementary material should
be used.

Since n does not enter into formula (82), all three loop types
Leaf, Crescent, and Classical of model (1) have the same loop area
S provided that the other parameters a, by, and m of these loops are
the same (see Fig. 1). Since parameter bx does not enter into formula
(82) as well, all the loops (1) having the same parameters a, by, and
m but different bx have the same area S [see Fig. 36(d)].

The area of smooth loops (29) tilted at the split point by angle θ
by skewing the coordinate system can also be calculated by formula
(82). Since the oblique angle θ is not included in formula (82), all
loops tilted by skewing at any angle θ have the same area S provided
that the parameters a, by, and m of these loops are the same (see
Fig. 8).

The area of the loop Classical (30) tilted and curved by skewing
is calculated by the general formula:

S =
πa

2m−1 C
m−1

2
m

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

bx tan κ
⎡
⎢
⎢
⎢
⎢
⎣

1 − (m + 1)
n−1

2

∏
k=0

2k + 1
m + n − 2k

⎤
⎥
⎥
⎥
⎥
⎦

+ by

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, (83)

where n is an odd number. According to (83), the area does not
depend on the oblique angle θ, and therefore, loops tilted by skew-
ing by any angle θ have the same areas provided that all other loop
parameters are the same (see Fig. 9). For κ = 0 (see Fig. 8), formula
(83) transforms into (82). In a particular case, for example, when m
= n = 3 (see Fig. 9), formula (83) is as follows:

S =
3
8
πa(bx tan κ + 2by). (84)

It is noteworthy that with Δα1 = Δα2 = Δα3 = Δα ≠ 0, where Δα
is an arbitrary real number, formula (79) also takes the form (82).
In this case, loops built according to models (1) and (13) will have
equal areas. This is because under the above conditions, these loops
are of exactly the same shape (see Sec. II A 2 d).

The area of the loop Classical (14) tilted by rotation is calculated
by the following general formula:

S =
πa

2m−1 C
m−1

2
m

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

sin θ(bx cos θ − by sin θ)

×

⎡
⎢
⎢
⎢
⎢
⎣

1 − (m + 1)
n−1

2

∏
k=0

2k + 1
m + n − 2k

⎤
⎥
⎥
⎥
⎥
⎦

+ by

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, (85)

where n is an odd number. According to (85), the classical loop areas
are different for θ rotation angles having opposite signs. For θ = 0,
formula (85) transforms into (82). In a particular case, for example,
when m = n = 3, formula (85) is as follows:

S =
3
8
πa[sin θ(bx cos θ − by sin θ) + 2by]. (86)

2. Piecewise-linear and hybrid loops
The areas of the simplest piecewise-linear loops having a paral-

lelogram shape (see Figs. 15 and 19–21) are easily determined using
the formula of the area of a parallelogram (m = n = 1),

S = 4a[
(a − bx) tan γ + by

tanβ − tan γ
tanβ −

a sinβ sin γ
sin(β − γ)

]. (87)

With no gain (γ = 0), formula (87) becomes much simpler,

S = 4aby. (88)

Since area (88) corresponds to the area of parallelogram with side
2a and height 2by, the areas of piecewise-linear loops of Play and
Non-ideal Relay types [see Figs. 20(e), 20(f), 20(k), and 20(l)] can be
determined by this formula. Since the hybrid loops (37) with zero
phase shifts (see Figs. 11 and 17) have translational symmetry, their
area is equal to the area of parallelogram with side 2a and height 2by,
and thus, it can also be calculated by formula (88).

The area of the hybrid Classical loop with gain/attenuation
(γ ≠ 0) (38) (see Fig. 18) is calculated by the following general
formula:

S = 4a{[(bx − a) tan κ − bx tan γ + by]

× [
k(n − 1)

(k + 1)(n + k)
tan θ tan γ + 1]

+ (bx − a)(
k

n + k
tan γ − tan κ)}, (89)

where n is an odd number and k is an even number. With no gain
(γ = 0), formula (89) takes the simple form (88). As follows from
(88), the zero gain hybrid loop areas do not depend on bx, n, θ, or κ.

Since the α parameter values at all corner points of the
piecewise-linear loops are known, their Cartesian coordinates are
also known. Therefore, the area of the polygonal loops, such as Play–
Relay–Play, Play–Play, and Play–Relay (see Figs. 12–14, 16, and 23);
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TABLE I. Average relative approximation error ⟨δ⟩ (%) of the original and improved
parametric models of hysteresis loop.

Loop Leaf, Loop Classical, Loop Classical,
Model Fig. 37(a) Fig. 37(b) Fig. 37(c)

Original 0.8 2.9 1.7
Improved 0.5 1.0 1.0

Play–Play–Play and Play–Relay–Play (see Fig. 22); Shifted Play,
Shifted Non-ideal Relay (see Fig. 24) and similar, can be calculated
using the formula for the area of a polygon specified by coordinates
of its vertices.

In a number of particular cases, the polygonal loops degenerate
into such polygons, which can be represented as a set of trapeziums
and/or parallelograms/triangles. For example, the loop Play–Relay–
Play with Gain in Fig. 22(c) can be represented as two identical
trapeziums and a rectangle, and the loop Shifted Play with Gain in
Fig. 24(a)—as three parallelograms, two of which are identical. Thus,
to calculate areas of these and similar loops, the corresponding for-
mulas of the areas of trapeziums, parallelograms, or triangles can be
used.

III. APPLICATION OF THE IMPROVED MODEL
The developed model enables building smooth, piecewise-

linear, hybrid, minor, mirror-reflected, inverse, reverse, double, and
triple loops. Calculation of derivatives and searching for the har-
monically linearized transfer function of a hysteresis element and
the inverse function are performed in the improved model similarly
to Ref. 1.

The usage of phase shifts Δα1, Δα2, and Δα3 and a number of
other transformations, which are changing the loop tilt and curva-
ture, let us reduce the hysteresis loop approximation error by several

times. Error analysis conducted according to the method described
in Ref. 1 has shown that the average relative approximation error

⟨δ⟩ =
100%
2nby

n

∑
i=1
∣ym(xi) − ye(xi)∣ (90)

[where ym(x) are the model data, ye(x) are the experimental data, and
n is the number of points on the ascending or descending section of
an experimental loop] of the improved model does not exceed 1%
(see Table I). For the comparison to be correct, the experimental hys-
teresis loops from Ref. 1 were used during the error determination.
Figure 37 shows approximating loops built according to the exist-
ing (1) and the improved (13) models overlaid with the experimental
loops from Ref. 1. It is easy to see that the approximation accuracy of
the improved model is notably higher than the approximation accu-
racy of the existing model. To minimize error, it is recommended to
draw the approximating loop by using least squares.30

Like the original model, the improved one can be applied for
correction of the distortions caused by hysteresis of piezomanipula-
tors [see Fig. 37(a)] of the scanning probe microscope (SPM). To do
this, phase-shifting elements providing phase shifts Δα1 and Δα2 (or
Δα1 and Δα3) should be added to the existing hardware suggested in
Ref. 1.

Instead of calculating the mth and nth powers of sine signals
using the hardware multipliers, as it was suggested in Ref. 1, it is
possible to simply sum the sine and cosine signals of multiple fre-
quencies according to (3). For example, to compensate for the dis-
tortions caused by the hysteresis loop Leaf (m = 3, n = 1) shown in
Fig. 37(a), two cosine signals of frequencies ω and 3ω, an element
shifting the phase by a quarter of period, three amplifiers with gains
3/4a, a/4, and bx, and two summing amplifiers are required.

According to (7), in order to compensate distortions of the loop
Leaf, two cosine signals of frequencies ω and 3ω, an element shifting
the phase by value φ1 = arctan (4bx/3a), two amplifiers with gains
Am1 =

√
9a2/16 + b2

x and Am3 = a/4, and a summing amplifier are
required.

FIG. 37. Approximation of real smooth hysteresis loops of types (a) Leaf and [(b) and (c)] Classical. The red uneven loop is experimental; the blue dotted loop is the existing
model; the green smooth one is the suggested improved model. Approximation error ⟨δ⟩ of the improved model does not exceed 1%.
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IV. SUMMARY
Improvements have been made to the existing model of a hys-

teresis loop built on parametric equations; several formulas derived
earlier were refined. As a result of the improvements, the approx-
imation accuracy has increased several times. It is shown that the
generating function of the hysteresis loop can be represented either
as a sum of an unsplit loop and a splitting curve, or in the form of a
frequency spectrum, or in an exponential form.

A general formula has been derived for building piecewise-
linear hysteresis loops of Play and Non-ideal Relay types as well
as their numerous variations widely used in simplified models of
hysteresis phenomena. The possibility of composing/decomposing
various hysteresis loops is demonstrated. For a number of loop types,
the results of the composition/decomposition suggest the simulta-
neous existence in the system under consideration not one but two
different hysteresis processes superimposed on each other. Several
new formulas describing various types of single, double, and triple
loops have been obtained.

In addition to the presented parametric equations of the par-
allelogram and the rectangle, the parametric equations of a rhom-
bus, square, regular hexagon, and regular octagon are found. A
more general expression has been suggested to determine the hys-
teresis loop area, which allows for evaluation of energy losses
in piezoelectric/ferromagnetic materials. In the course of the
study, several identities related to the binomial coefficients were
found.

The hysteresis loop model developed is especially suitable for
solving the tasks of simulation of cyclically operating instruments
that include hysteresis elements.31 In addition, the model permits
us to build the output signals x(t) and y(t) with simple hardware
components, thus allowing easy hardware implementation of both
direct and inverse hysteresis loops.

SUPPLEMENTARY MATERIAL

The supplementary material includes zip-archive with Math-
cad 2001i worksheets, where all aspects of the original and improved
parametric models of hysteresis loops are considered in detail. Those
who do not have Mathcad software may take advantage of the
enclosed readable Mathcad worksheets as a PDF-document. Due to
restriction on the length of the article, it presents only the most com-
mon hysteresis loops. If the required loop is absent in the article, it
makes sense to search in the supplementary material.
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